GEOMETRIC REPRESENTATION THEORY OF THE HILBERT SCHEMES
PART II

ALEXANDER TSYMBALIUK

ABSTRACT. Identifying the sum of (equivariant) homology groups of (C2)[" with the Fock
space, we interpret geometrically some important elements of the Fock space. As a corollary,
we prove an existence of Jack polynomials.

1. RECOLLECTION

In today’s lecture we use the following notation:
o X =C2
os: XM - Sym™ X is the Hilbert-Chow map.
o T = C* x C* is the two-dimensional torus acting on X and, therefore, on X[ and Sym™ X.
o &y € X[ denotes the T-fixed point parametrized by the Young diagram A.
o \* denotes the conjugate of the Young diagram A.
o H denotes the Heisenberg algebra.
oM :=@H. (X)), MT .= @ HIPM(XI), ML =@ H P (X)),
o R:= H(pt) = Cley, €2], F := Frac(R) = C(e1, €2), where €1, €2 form a natural basis of Lie T,
corresponding to the one-dimensional subtori {(¢,1)} and {(1,¢)}, respectively.

Last time we constructed an action of H on M by using the Grojnowski-Nakajima corre-
spondences Z,[i] and Zg[j]. We also proved that M is isomorphic to a Fock module over .
In other words, there exists an isomorphism of H-modules

0 :Clz1, 22,...]—M,
where C[z1,22,...] is a level 1 Fock module over K, and 6(1) = 1-the generator of Hy(X0)).
This isomorphism depends on the nonzero class § € Hy(X) ~ C[pt], namely:
O0(2iy2iy - 2iy) = Zpl—i1]Zp[—i2] - - - Zp[—in](1) Viy 2ip >+ > in.

We also proved that the same correspondences define an action of 3 on M7 and MIEC.
According to the localization theorem:

Ml,z;c = @F [5)\}
A

Since 1 € Hy "M (X19) is annihilated by {Z,[i]}i>0 and M. has the same g-dimension as the
Fock module, we actually get an isomorphism of H-modules

QT : F[Zl, Z2, .. ']l)Mlz;cv
defined in the same way as 6 for any nonzero class 8 € HY "M (X).

Remark 1.1. (a) The Poincaré dual of [x — axis] and [y — axis] are actually €5 - 1 and €; - 1.
(b) Note that HT (X) ~ Hzx(pt) - [0], HI"PM(X) ~ Hzx(pt) - [X], since C2 xp ET — BT is a
vector bundle. Also HT (X)ie ~ F - 0], HEPM(X)1pc ~ F - [X] by the localization theorem.
Therefore, the choice of «, 8 is unique up to proportionality.
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2. SYMMETRIC FUNCTIONS

2.1. Ring A.
Fix N € N and let Ay be the ring of symmetric functions in N variables x1, ..., xy, that is,
AN = Z[lL‘l, . ,.%N]SN.
This ring is naturally graded by the degree of polynomials:
Ay = P A%.
n>0
For any K > N, there is a homomorphism
Zlz1,...,xx] = Z[x1,...,xN] given by 21 — 21,..., 2N = TN, ZN4+1 — 0, ..,k — O.
It induces the homomorphism of graded rings
pr,N A — Ap.
Let us point out that for any K > N > n, the degree n component of pg n is actually an
isomorphism
P+ N oA
Therefore, we can define the ring of symmetric functions in infinitely many variables as
. — n 3 no.__ 1z n
A= DA™ with A” = lim A}
n>0
Finally, we define Ar := A ®z R for any ring R.

2.2. Two bases for Ag.
Recall the two families of symmetric functions:

o Monomial symmetric functions my.
Fix a Young diagram A. For N > I(\) = A}, define m € A'A),“ by

— 1 Ao (1) Ao (N)
ma(T1,...,TN) = o€ Sy o= A le AN AR

cESN
For any K > N > [(\), we have
pll;?,lN(m,\(J;l, ces i) =ma(T1, .. EN).
Thus, the sequence {mx(z1,...,2N5)}n>i(n) defines an element of A, which we denote by my.

It is well known that {m} is a basis for A, and hence also for Ag.

e Power symmetric functions py.
Let us consider the n-th power sums

Pn = Mp) = me €A
We define py € A by
p)\ = p/\lpAQ .
It is well known that {px}» is a basis for Ag (but not for A).

Identifying Ag—Q[p1, p2, - ..}, we will view the isomorphism 67 as

(%) 07 A ME_.
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3. GEOMETRIC REALIZATION OF mj)
In this section we describe geometrically the images of my € Ay under the isomorphism ().

3.1. Subvarieties L Y.
Let ¥ C X denote the z-axis, i.e., ¥ = {(x,0)} C C2.

Definition 3.1. Define L*¥ C | |, X[ as the locus, corresponding to those ideals I C Clz, y]
such that supp(Clz,y]/I) C X.

In other words, L*Y =| |, s7'(Sym" ¥). Note that Sym” ¥ has a natural stratification
Sym" ¥ = |_| Sy, SYY = {Z Ailzi] € Sym" X | z; # x; for i # j} .
AFn

Exercise 3.1. Show that s™1(SYY) are locally closed n-dimensional irreducible subvarieties of
Ly = L*yn XM,

Moreover, their closures
LAY = s1(57Y)
are irreducible components of L*¥. Next, we provide alternative definitions of L*Y.

3.2. L Y via a C*-action.
Let us consider a one dimensional subtorus 77 C T' given by 7" = {(1,¢)}. Then we have:

Proposition 3.2. For a point € € X", there exists a limit tlim (Lit)-£iff e L%,
—00
Proof. Follows from the properness of s and an analogous result for Sym”™ X. 0

For a Young diagram A and zy € X, let I) ., C C[z,y] be the ideal parametrized by A and
such that supp(Clz,y]/Ix z,) = {(20,0)}, that is,
Inzo =M, (@ — 20)y™, ... (2 — 20) ).
The following is obvious:

Proposition 3.3. [N1, Proposition 7.4] If a codimension n ideal I C Clx,y] defines a T'-fized
point of X" then it can be uniquely expressed as I = Iy o, N~ NIy, forr distinct points
21,...,2r €Y and a collection of Young diagrams {\'} such that > |\!| = n. Conversely, any
such intersection Ini ,, N --- NIy . defines a T'-fized point of Xl

For a collection {\!,... A"} of r Young diagrams we associate a single Young diagram A, de-
fined by A = A!U...UA". In other words, if A = (11272 . ..), then A = (17 +—Fnignat-+ns

Exercise 3.4. Verify that Ix1 ,, N1Ix2 ., — Iniuxz ., 05 22 — 21.

For a Young diagram A = (1"12"> ...}, we define S* as the locus of (X")T" such that the
associated collection {\!,... A"} satisfies A = AL U...U\". Together with Exercise 3.4, we get:

Proposition 3.5. (a) S*Y = S™1% x ™25 x ...
(b) The irreducible components of (X" are exactly {S*S}xrn.
(c) Each S*Y has an open stratum Sg¥ corresponding to X', ... X" being 1-column diagrams.

Consider the decomposition L"Y = | |,,_,, Wy, W, :={{ € L"Y | tlim (1,t)-€ € S*%}.
: —00

Proposition 3.6. [N3, Proposition 2.17] We have L*Y = Wy .

Proof. Follows from S3% C s~1(SyE) (both LAS, Wy are irreducible and equidimensional). [
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Proposition 3.7. For any diagram X, the component L Y. is a Lagrangian subvariety of X ™.

Proof. Note that the symplectic form w on X[ is semi-invariant w.r.t. 7’-action: Yiw =1 w.
For any & € S*Y, consider a weight decomposition of the tangent space: TgX["] =@, H,. The
above condition implies H,, 1“ H,, unless n + m = 1. Together with the nondegeneracy of w,
we see that Te, W = ®p<oH, has half dimension. Further, for any y € W, close to = and
u,v € TyWy , we get wyy (tu, tv) = t-wy(u,v). Existence of tlirgotwy(u, v) implies w(u,v) =0. O

For any m, | € N, consider a one-dimensional subtorus T}, ; := {(t~™,#)} of T. For a fixed
n and generic m,l € N we have (X[M)Tmt = (X[PHT 1

Proposition 3.8. (a) For a point ¢ € X, there exists a limit tlim (t=m ) € iff € € LY.
— 00
(b) We also have Wy :={{ € L™ | tlim (™t € =€)
—00

The proof of part (b) relies on the character formula from the end of last talk:

() ch T, (X[n]) _ Z (tll(D)Jrlt;a(D) + t;l(D)tg(D)Jrl) .
Oex

Proof. (a) Same as in Proposition 3.2.

(b) Both varieties are T-invariant, so it suffices to check the equality in the neighborhood of &,.
In such a neighborhood, the contractable locus corresponds to the sum of non-positive weight
spaces. However, a T-weight from (}) is either both 7" and Ty, ; positive or non-positive. O

The benefit of T, ;-action rather then 7”-action is that the fixed point locus is discrete.?

3.3. Geometric realization of m).
Let NT be the sum of the Borel-Moore equivariant homology groups of L*¥:

If @« = €1, B = €y are the Poincaré dual to [y — axis| and [z — axis], then the correspondences
Zo[i] and Zg[—i] also act on NT.? Analogously to (x), we have an isomorphism 97 : Ap—+NT_

Dx =DaPrs - = Zgl—M]Zgl—Xa] -1 VA1 > A > -
Proposition 3.9. We have 97 : my s [L*Y].

Sketch of the proof. This result is a generalization of the corresponding fact in a non-equivariant
setting [N1, Theorem 9.14]. However, the latter should be applied to the compactification P?,
rather then C? itself, since ¥ defines a zero homology class of C2.

To check 9T (my) = [L*Y], it suffices to prove Zs[—i][L Y] = >, axu[LME], where the
coefficients a,, are determined by the identity p; - my = Zu ax,m, in A. It is clear that ay,
is equal to the number of indexes r such that {A1,..., A1, A + 4, Apg1, -} = {1, g2, - -}

In order, to determine the coefficient of [L*Y] in Zs[—i][L Y], we can compute everything
in the neighborhood of an arbitrary point Jy € L*#¥. We choose such a point to be of the form
Jo=1Iu, - N---N1, ., for pairwise distinct points z1,...,2 € ¥, L :=I(u).

Then (Jo,J,z) € Z|~i| <= 3Fj:x=x;and J = I, ., N-- NI, ;.. NN, . Therefore,
the coefficient of [L*Y] in Zx[—i][L Y] is nonzero iff ay, # 0. In the latter case ay, is equal to
the number of possible choices of x € X as above. It remains only to check that each such choice
of  contributes 1 to the coefficient. This requires a transversality result (see [N1, p.112]). O

e} 1

L A similar argument was already used last time in the proof of dimg M = Hj:1 fr

2 In [N3], Nakajima considers only Ty 1. However, it is not obvious for us why (X[")71.1 = (x )T,

3 Those classes are nonzero in the equivariant homology, unlike in the non-equivariant setting.
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4. GEOMETRIC REALIZATION OF JACK POLYNOMIALS

In this section we introduce the important class of symmetric functions called Jack polyno-
mials. Using the isomorphism (%), we provide their geometric interpretation. In particular, this
yields an alternative proof of their existence. Our exposition follows [LQW, N3]J.

4.1. Jack polynomials P;\k).
Let k be an independent variable. Consider the inner product (-,-), on Agx) defined by

<p)\7pu>k = kl()\)z)\é‘éfa
where zy := [[1™ny! for A = (1"12"2...).
Last time we introduced a complete order =< and a partial order < on Young diagrams.

Theorem 4.1. For each partition A, there is a unique symmetric polynomial Pik) satisfying:
(i) P;\k) =my+ 3 ,n uﬁflmu for some uE\kL € Q(k).

.. k k .
(ii) (P Py = 0 if X # .

Definition 4.1. Polynomials Pf\k) are called the Jack polynomials.
Remark 4.1. For k =1 we recover back the Schur polynomials: P>(\1) = S).

The uniqueness of the orthogonal basis {P)(\k)} a is clear from the Gram-Schmidt orthogonal-
ization process. Namely, there exists a unique basis {P/&k)} satisfying condition (ii) and
(") P;k) =mx+2,<n ug\kzm# for some uf\kl)t € Q(k).

However, it is quite nontrivial to show that u&kl)t =0 unless u < A (see [M, Section VI.10]).

Remark 4.2. The original proof is based on the following idea. One can construct a family of
pairwise commuting differential operators {D;} acting on A, which are self-adjoint w.r.t. (-, ).
It is easy to check that D;(my) is a linear combination of {m,},<x and {D;} have a simple
spectrum. Therefore, their joint eigenvectors (properly normalized) satisfy (i) and (ii).

We also introduce the integral form J /(\k) of the Jack polynomials by

J/(\k) = ck(k)P/{k), where cy (k) := H (k-a(@)+1(O)+1).
Oex
Remark 4.3. It turns out that Jik) is a linear combination of {m,},<x with coefficients in

Z>o[k]. Therefore, one can specialize k to any complex number in J )(\k), but not in PA(k).

4.2. Geometric realization of P/Sk).
In this section we provide a geometric realization of the Jack polynomials. It is worth to
mention that this construction has no counterpart in the non-equivariant setting, unlike py, m..
Let us start from the following sequence of isomorphisms:

DF - [ea] = HI (X oo HI P (L Do HIPM (X e,
AFn o 7
where 7 : L"Y — XML 10| |, {6} = LS, 0y : {&} — X[ are the inclusions.

Note that {[L*%]}xrn is a natural basis of Hy "M (L"%)c. Our next goal is to compute
¢ Y([L*Y)]) in the fixed point basis {[¢,]}. By the fixed point formula, we have

(1) GHEAY]) = Z exuléul, eap €F.

w€  €LAS
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Remark 4.4. If £, is a smooth point of LY, then ¢y , =

the Euler class of the corresponding tangent space.

m7 where e(T¢, L*Y) denotes
P

The following result provides a geometric interpretation of the dominance order on Young
diagrams. We postpone its proof until the end of this section.

Proposition 4.2. If ¢, € LAY, then u < . Moreover, &y is a smooth point of LAY.
Let us now consider the intersection pairing

() HPPM (X)) @ BT (X)) — HI (pt), u @ v (=1)"pxim.(unw).

This pairing is perfect, due to the Poincaré duality, and yields a perfect pairing*
() + Mige ® Mo, — F.

Moreover, we have:®

(Zalilu,v) = (u, Za[=ilv), Zpalil = fZalil, Zalilf = fZalil, f € Hp(pt).
The first equality implies
(2) (Pala], PulB]) = (e, 5))'M 2288, where PL[8] = Zs[—u]Zs[—p] ... (1).

In other words, the isomorphism 67 intertwines (,)) on the Ap-side with (,) on the M -side,
where k = —(33, 8). In particular, for 3 = €3 we get k = —ea/e1.°

Note that the intersection pairing (, )7 on HI (X"HT)1oc = @y, F - [€,] is a direct sum of
those on HI ({£3})10c, that is, ([€,], [€.])T = 5. On the other hand, by the projection formula:

(955 (A), 204 (B)) = (A, "1 350 B).

Since t5tri(0) = e(Te, XM) Mo, we get ([€3], [€.]) = (—1)"e(Te, X M) - 85.
Combining this observation with Proposition 4.2 and formulas (1)-(2), we get

Theorem 4.3. Under the isomorphism 67 : Ap— M, we have
PR = k=— .
A e(TgkL/\E) [f)\}ﬂ 62/61

Remark 4.5. This theorem also proves an existence of the Jack polynomials.
Let us finally provide a formula for e(T¢, L*Y) (see Appendix for the proof):

Proposition 4.4. The equivariant Euler class of the tangent space to L Y at £\ equals

e(Te, ') = [T (O) + Der — a(@)ez) = e - ex(k).
Oex

Remark 4.6. Note that efp" -[€x] corresponds to the integral form of the Jack polynomial Jik).

4 Since HI'BM (xInly o ~ HIBM(XIYTY) o~ @y, F - [63] ~ HE (XD T )00 ~ HT (X))

5 For the first one we use the projection formula: (Zg[i]u,v) = Il (py(w) Np3(u) N7* () = (u, Za[—i]v),
where p1, p2, p3, 11 are the projections of Z"[i] to X[”],X[”“],X7 pt, respectively.

6 Let 3/ be the y-axis. By the fixed point formula: [E] = %, = %, EIN[E] = [pt] = [Z]N[X] = z—f[pt],
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4.3. Proof of Proposition 4.2.
The main goal of this section is to provide a geometric interpretation of the dominance order
on diagrams. For an ideal I € L™3, consider a sequence of vector spaces

Vii=(y")/(IN(y")),i > 0.
Note that dim Vy = n,dim V,, = 0. Moreover, we have short exact sequences:
0=Vi=Vig=U =0, U =Y (y)+Iny")).
Define v; ;= dimU;. Then > v; =n —0=mn and it is clear that v; > vy > ... > 1, > 0.7

Let V¥ C L™ be the locus of those ideals such that the associated partition equals v. This
yields one more decomposition of L™3:

Ly=| v
vkn
Note that dim V; <1 is a closed condition for any integer {. Combining this with the formula
dmV, =viy1+vigo+...=n— (11 + ...+ 14), we get
(3) Ve v
v'>v

Let us now establish the connection between {V#} i ,-stratification of L"¥ and {L’\E})\Fn.
Proposition 4.5. [N2, Proposition 4.14] We have L)Y = VA",

Note that the partition v associated to £, equals v = p*. We also have u < A <= p* > A8
These observations together with Proposition 4.5 and (3) imply Proposition 4.2.

Proof of Proposition 4.5.
According to Proposition 3.6, we can view LY as a closure of W, . For a generic point

& =[] € W, , we have tlggo (L,t)- I =1Ix . N---NIx. ., where z1,..., z are pairwise distinct
points of ¥ and Aq, ..., A, are 1-column Young diagrams. It is clear that the partition v = v();)

corresponding to Iy, . is just v(\;) = (1Y), i.e., Iy, ., € Y,

Since the support supp((1,¢) - £) C ¥ is independent of ¢, we get
I=ILnN---NI with supp(Clz,y]/I;) = {(%;,0)}.
On the other hand, V™) is an open stratum of LV %, due to (3). Therefore (1,¢)-1I; € Y
for “sufficiently large” ¢t. Notice also that V(™) ig T'invariant. Therefore
LeVl™ —Tevy = I’nC V™.

Conversely, given a point ¢ = [I] € V*™ we have Jim (1,8)-I = PUINY1)/(IN(YY)) = I-
Obviously Ix € SAL =T € Wy = V" C L%

The result follows. O

Remark 4.7. During the proof, we saw that V(1") is an open stratum of L™¥. Let us point out
that L(™)Y also has a simple description: LMY ~ 2 ~ Sym™ ¥.

7 If the images of {fx(x)y*~! 2:1 are linearly independent in U;, then the images of {fj(z)y* 2 2:1 are
also linearly independent in U;_1.

8 To prove this assume the contrary: there exist A, u such that u < X, but p* % A\*. The latter condition
implies an existence of r such that ,u’l‘+‘..+,u;f > )\’1‘+...+)\;f for j <r,but uj 4+ ...+ pr < A7+ + A5
In particular, pi < A7 and pf ) +ppio+... > Af ) + A%, + ... The latter inequality can be rewritten as
(B1=7)+ ...+ (ppx —7) > (A1 —7) + ...+ (Axx — ), which contradicts p < A.
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APPENDIX A. CHARACTER FORMULA AND THE EULER CLASSES

In this appendix we prove the character formula (}) by realizing the tangent space T¢, (c?)l
as the middle homology of an explicit complex of T-representations. As a corollary of this
formula, we deduce Proposition 4.4 as well as the norm formula for the Jack polynomials.

A.1. The character formula. ~
Let V,, := C™ and identify gl,, with End(V},). Recall that (C?)"l =M,/ GL,,, where
M, = {(A, B,i,j) € gl, x gl,, x Hom(C, V;,) x Hom(V,,,C) | [A, B] +ij = 0, C[4, B](Imi) = V,,} .

The action of G = GL,, on M,, is given by 9(A, B,i,j) = (gAg~t,gBg~ 1, gi,jg™ 1), g € G.
We view gl,, x gl,, x Hom(C, V,,) x Hom(V},, C) as the cotangent bundle of gl,, x Hom(V,,, C),
while the map p : (A4, B,i,5) — [A, B]+ij € gl,, is the moment map for the above G-action. We

also identify 114G ~ gl,,, Tgoff[n ~ gl,, x gl,, x V, x V.* for any point &, = (Ao, Bo, i0, jo) € JV[n
The differential of the G-action in the neighborhood of & € My is given by®

dm® : gl,, — gl, x gl,, x V,, x V', Z = ([Z, Ao}, |Z, Bo), Zio, —joZ = 0).

n

This map is injective. Indeed, if Z is mapped to zero, then iy € Ker(Z) and so Ker(Z) # 0.
But Ker(Z) is stable with respect to A, B and hence must be the whole space V,,, i.e., Z = 0.
The differential dp, : gl,, x gl,, x V;, x V. = gl,, of the moment map is given by

dMEO : (A7B7Z7.7) = [AOwB] + [Aa BO] + ZO]

Identifying Coker(dpg,) ~ Im(dug, ) with respect to the trace form, we get:

Coker(dpe,) = {C € gl,, | tr(C[Ag, B] + C[A, By] + Cipj) =0 VAegl,,Begl,,jeV }=

{C S g[n | [C, A()] = [07 Bo] =0,Cig = O} =0,
where we used the stability condition in the last equality. Thus, dug, is actually surjective.
Hence, we get a complex
a b
(1) Hom(V,,, Vi) — End(V,,, Va,) ® End(V,,, V;,) @ Hom(V,,, C) ® Hom(C, V,,) - Hom(V,,, V,,),
where a := dm®°, b:= dpte,. The middle homology of it equals
Ker(b)/Im(a) =~ Tg, (€)™ where & € X" is the image of & € M,.

To compute the T-character of T¢, (C?)[™], we should view (}) as a complex of T-representations.
Recall that V,, ~ Q» := C[xz, y]/I,, where the operators A, B correspond to the multiplications
by x,y. Hence, the natural T-weight decomposition of ) corresponds to the T-weight decom-
position V,, = @, ; Va(k, 1) with Im(i) € V,,(0,0) and deg(A) = (—1,0),deg(B) = (0, —1).

Let us rewrite the above complex by changing the middle term to

Cy := Hom(V,,, V,, ® Q) @ Hom(C, V,,) @ Hom(V,,, C ® A*Q),

the rightmost term to Oy := Hom(V,,,V,) ® A2Q, the leftmost term to C3 := Hom(V,,, V,,),
where @ is the 2-dimensional T-module and the maps C3 — Cs — C are the same.
This yields the complex of T-representations

0—=>Cs = Cy—Cy —0.
Identifying the tangent space T¢, (C?)I"] with the middle homology of this complex, we get
chT¢, (C?)" = ch(Cy) — ch(Cy) — ch(C3) = ch (V,y @ V,, ® (Q — A*Q — 1) + Vi, + Vi @ A*Q) .
Exercise A.1. Derive (t) by using ch(Q) = t; + t2, ch(V,) = Zﬁ(:’\l) Z?;l il

9 Recall that the stability condition forces jo = 0.
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A.2. Proof of Proposition 4.4.

It is easy to see that LY is a submanifold in a neighborhood of {£,}. Due to Proposition 3.8,
the tangent space Tg, (LX) is the direct sum of negative T}, ;-weight subspaces of T, (X))
for generic m,l. Combining this observation with (1), we get

Corollary A.2. We have ch T, (L*E) = Y0y tll(D)+1t2_a(D).
This corollary implies Proposition 4.4.

We conclude this appendix with the following result:

Proposition A.3. The norm of the Jack polynomial is given by

<}§m7}§m>k::11 %Eg{:kijag?lZi?-

Oex
Proof. According to Theorem 4.3, the isomorphism 67 intertwines pairing (, )z with {,) and
07 P9 = oI, %) 6.
Therefore, we get
- e ) = (oM AT X ),
It remains to use the equality kK = —ea /€1, Proposition 4.4 and the formula
e(Te, X") = TT (@) + Der — a(@e2)(~1(@)er + (a(D) + Dea).
Oex

k k
(M, P,
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